Department of Engineering Chemistry

COURSE INFORMATION

I & II SEMESTER B.E. (ODD/EVEN SEMESTER)

For Academic Year 2020-2021

BMS Institute of Technology and Management, Yelahanka

Bengaluru – 560 064

BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT Avalahalli, Doddaballapur Road, Yelahanka, Bangalore - 560064

VISION OF THE INSTITUTE					E		To emerge as one of the finest technical institutions of higher learning, to develop engineering professionals who are technically competent, ethical and environment friendly for betterment of the society.								
MISSION OF THE INSTITUTE						ITUT	re			Accomplish stimulating learning environment through high quality academic instruction, innovation and industry-institute interface.					
Month	Week	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Workin g Days			EVEN	TS		
	W-1			1	2	3	4	5	5	1-Sept.:	: Commencement of E	.E (III, V, & VII Sem.),	MCA (III & V Sem.)	& M.Tech (III Sem.) Class	es
er	W-2	6	7	8	9	10	11	12	6	10-Sept.: FYP/PBL	. Group Formation			A CANADA MARIA DA MARIA	
September	W-3	13	14	15	16	17	18	19	5	17-Sept.: Maha	laya Amavasya				et.
Sel	W-4	20	21	22	23	24	25	26	6	21-Sept.: FYP/PBI	. Guide Allotment	21-Sept.: FI	MS Update		
	W-5	27	28	29	30				3	30-Sept.: FYP/PBL S	synopsis Submission				-
	W-6					1	2	3	2	2-Oct.: Gand	lhi Jayanthi				
1	W-7	4	5	6	7	8	9	io	6		nternal Assessment (l n.) M.Tech (III Sem.)				
October	W-8	11	12	13	14	15	16	17	6	14-Oct.: SMS D	ispatch for IA-1	16-17 Oct.: Stude on Fa		17-Oct.: PTA for High	ner Semester
00	W-9	18	19	20	21	22	23	24	6	20-Oct.: FI	MS Update				
	W-10	25	26	27	28	29	30	31	3	26-Oct.: Vij	ayadashami	27-28 Oct.: FYP/PBL	Patentability Review	31 30-Oct.: Eid Milad	-Oct.: Valmiki Jayanthi
	W-11	1	2	3	4	5	6	7	6	1-Nov.: Kanna	da Rajyotsava	5-7 Nov.:In B.E (III, V, & VII Sem	ternal Assessment (1) M.Tech (III Sem.)		
	W-12	8	9	10	11	12	13	14	6	14-Nov.: Tech-T Notifi		14-Nov.: SMS Dispatch for IA-2			
November					22797						16-17 Nov.: Students			nie in de la companie	
Nov	W-13	15	16	17	18	19	20	21	5	16-Nov.: Balipadyami Deepavali	Feedback - 2 on Faculty	20-Nov.: PBL Review - 2/BM			1-Nov.: Tech- ansfrom 2020
	W-14	22	23	24	25	26	27	28	6	27-28 Nov.: FY Revie					
	W-15	29	30						1						A,
	W-16			1	2	3	4	5	4	3-Dec.: Kanak	adasa Jayanti		*		
er	W-17	6	7	8	9	10	11	12	6		nternal Assessment (I n.) M.Tech (III Sem.)				
December	W-18	13	14	15	16	17	.18	19	4	16-Dec.: SMS Di	ispatch for IA-3	B.E (3rd, 5th, & 7th	17-Dec.: Last W Sem.), MCA (3rd &	orking Day for 5th Sem.) & M.Tech (3rd S	Sem.) Classes
	W-19	20	21	22	23	24	25	26		21-Dec.: FI	MS Update	25-Dec.: Christmas			
	W-20	27	28	29	30	31					1				
		al Nu	-				-		86 TION	SE	MESTER END EX	AMINATIONS	L	IST OF HOLIDAYS	
CC	DURSE		SEM TERN		8	START	r	9 79	END	COURSE	START OF EXAM	END OF EXAM	17-Sep 02-Oct	Mahalaya Ama Mahatma Gandhi	
B.E B.E			1			TBA			TBA	B.E: I-SEM B.E: III, V, & VII-SEM	04-01-2021	23-01-2021	26-Oct	Vijayadash	ami
MCA			, V, V II & V	Statement .		05-Oc	t		07-Oct	M.Tech: I - SEM			30-Oct 31-Oct	Eid-Mila Maharishi Valmil	ti Jayanti
M.Te			1			TBA TBA	-		TBA TBA	M.Tech: III - SEM MCA: I - SEM	04-01-2021	23-01-2021	01-Nov 16-Nov	Kannada Rajy Balipadyami De	
B.E		IN	TERN.	AL AS	SESS	MENT	Γ-2	10	TBA	MCA: III & V - SEM	04-01-2021	23-01-2021	03-Dec 25-Dec	Kanakadasa J Christma	Marie Company
B.E MCA	1/1		, V, V II & V			5-No			7-Nov	COURSE	ESSIONAL TRAINING	/INTERNSHIP VIVA-V START		PARENTS-TEACHERS	ASSOCIATION
M.Te	ch.		I			TBA TBA			TBA TBA	B.E M.Tech	B.E		08-Feb	PTA PTA - 1	DATE 17-Oct
B.E			TERN.	Title I		TBA			TBA	MCA COMMENCEME	ENT OF EVEN SEMES	25-Jan IER (2020-21)		PTA - 2 ACTICAL EXAMINATION	TBA
B.E MCA			, V, V II & V		0	7-Des			9-Dec 9-Dec	COURSE B.E	SEM III, V & VII	DATE 08-Feb	COURSE B.E	The second secon	DATES Dec to 31-Dec
M.Te			I			TBA TBA			TBA TBA	MCA M.Tech	III & V	08-Feb 22-Feb	MCA M.Tech		Dec to 31-Dec
	IA IIC		Ţ.		_	Asse			11	FIMS FYP		on Mgmt. System	PTA	Parents-Teachers-A	Notice State of the last of th
		- 1	411	restut	on II	ovil	CIOIL	Joune		PXP	A Pinal Ye	a rioject	PBL	Projects Based I	A
	Coo	rdina	tor -	6	2 02 E	20				C	Head - IQAC			PRINC	IPAL

BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT DEPARTMENT OF CHEMISTRY

COURSE OUTCOMES: (Given by VTU)

COURSE: ENGINEERING CHEMISTRY

COURSE CODE: 18CHE12/22

Course Outcomes: On completion of this course, students will have knowledge in: **CO1:** Use of free energy in equilibria, rationalize bulk properties and processes using thermodynamic considerations, electrochemical energy systems.

CO2: Causes & effects of corrosion of metals and control of corrosion. Modification of surface properties of metals to develop resistance to corrosion, wear, tear, impact etc., by electroplating and electroless plating.

CO3: Production & consumption of energy for industrialization of country and living standards of people. Electrochemical and concentration cells. Classical, modern batteries and fuel cells. Utilization of solar energy for different useful forms of energy.

CO4: Environmental pollution, waste management and water chemistry.

CO5: Different techniques of instrumental methods of analysis. Fundamental principles of Nanomaterials.

COURSE: ENGINEERING CHEMISTRY LAB

COURSE CODE: 18CHEL16/26

Course outcomes: On completion of this course, students will have the knowledge in:

CO1: Handling different types of instruments for analysis of materials using small quantities of materials involved for quick and accurate results.

CO2: Carrying out different types of titrations for estimation of concerned in materials using comparatively more quantities of materials involved for good results.

BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT DEPARTMENT OF CHEMISTRY

COURSE OUTCOMES: (Department) (2018-19, 2019-20, 2020-2021)

COURSE: ENGINEERING CHEMISTRY

COURSE CODE: 18CHE12/22

Course Outcomes: On completion of this course, students will have knowledge in:

CO1: Understand the concept of free energy in equilibria and apply thermodynamic principles for the evaluation of electrochemical energy systems.

CO2: Evaluate the causes & effects of corrosion of metals and to prevent corrosion. Surface modification of metals to enhance the physical and mechanical properties by electroplating and electroless plating.

CO3: Identify sustainable energy sources and its utilization for the improved living standards of people and better industrialization of country.

CO4: Understand the impact of various types of pollution on environment and human beings and to control the factors affecting pollution by proper waste management.

CO5: Quantitative and qualitative analysis of materials by using different instruments. Understand the importance of nanomaterials and to study synthesis, properties and applications for industrial revolution

COURSE: ENGINEERING CHEMISTRY LAB

COURSE CODE: 18CHEL16/26

Course outcomes: On completion of this course, students will have the knowledge in:

CO1: Handling different types of instruments for analysis of materials using small quantities of materials involved for quick and accurate results.

CO2: Carrying out different types of titrations for estimation of concerned in materials using comparatively more quantities of materials involved for good results.

DEPARTMENT OF CHEMISTRY

CO-PO MAPPING (2018-19, 2019-20, 2020-2021)

Engineering Chemistry Theory -18CHE12/22

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	-	1	-	-	-	-	-	-	-
CO2	3	2	1	-	1	-		-	-	-	-	-
CO3	3	2	1	-	1	-	1	-	-	-	-	-
CO4	3	2	-	1	-	-	1	2	1	1	1	ı
CO5	3	2	1	2	1	-	-	-	ı	-	-	-
CII	3	2	1	2	1	-	1	2	-	-	-	-

Engineering Chemistry Lab- 18CHEL16/26

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	-	2	1	-	-	-	-	-	-	-
CO2	3	1	-	2	1	-	-	-	-	-	-	-

Ramskn'llugger J

HOD, CHEMISTRY

VISVESVARAYA TECHNOLOGICAL UNIVERSITY, BELAGAVI

B.E.SYLLABUS FOR 2018-2022

Engineering Chemistry

(Common to all branches)
[As per Choice Based Credit System (CBCS) scheme]
(Effective from the Academic Year 2018-19)

Course Code: 18CHE12/22

Contact Hours/Week: 05 (3L+2T)

Total Hours: 50 (8L+2T per module)

Semester: I/II

Credits: 04(3:2:0)

Course Learning Objectives: This course (18CHE12/22) will enable students to

- Master the basic knowledge of engineering chemistry for building technical competence in industries, research and development.
- To develop knowledge in the fields of use of free energy in chemical equilibrium, electrochemistry and energy storage systems, Corrosion and metal finishing.
- To understand the importance of energy systems, environmental pollution, waste management, water chemistry, Instrumental methods of analysis and Nanomaterials.

MODULES

MODULE- I: Electrochemistry and Energy storage systems

Use of free energy in chemical equilibria: Thermodynamic functions: Definitions of free energy and entropy. Cell potential, derivation of Nernst equation for single electrode potential, numerical problems on E, E^0 , and E_{cell} .

Electrochemical Systems: Reference electrodes: Introduction, construction, working and applications of Calomel electrode. Ion-selective electrode – Definition, construction and principle of Glass electrode, and determination of pH using glass electrode. Electrolyte concentration cells, numerical problems.

Energy storage systems: Introduction, classification - primary, secondary and reserve batteries. Construction, working and applications of Ni-MH and Li-ion batteries.

(RBT Levels: L3)

MODULE-II: Corrosion and Metal finishing

Corrosion: Introduction, Electrochemical theory of corrosion, Factors affecting the rate of corrosion: ratio of anodic to cathodic areas, nature of metal, nature of corrosion product, nature of medium – pH, conductivity and temperature. Types of corrosion - Differential metal and Differential aeration - pitting and water line). Corrosion control: Anodizing – Anodizing of aluminium, Cathodic protection - sacrificial anode and impressed current methods, Metal coatings - Galvanization.

Metal finishing: Introduction, Technological importance. Electroplating: Introduction, principles governing electroplating-Polarization, decomposition potential and overvoltage. Electroplating of chromium (hard and decorative). Electroless plating: Introduction, electroless plating of nickel & copper, distinction between electroplating and electroless plating processes.

(RBT Levels: L1 & L2)

MODULE-III: Energy Systems

Chemical Fuels: Introduction, classification, definitions of CV, LCV, and HCV, determination of calorific value of solid/liquid fuel using bomb calorimeter, numerical problems. Knocking of petrol engine – Definition, mechanism, ill effects and prevention. Power alcohol, unleaded petrol and

biodiesel.

Fuel Cells: Introduction, differences between conventional cell and fuel cell, limitations & advantages. Construction, working & applications of methanol-oxygen fuel cell with H₂SO₄ electrolyte, and solid oxide fuel cell (SOFCs).

Solar Energy: Photovoltaic cells- introduction, construction and working of a typical PV cell. Preparation of solar grade silicon by Union Carbide Process/Method. Advantages & disadvantages of PV cells.

(RBT Levels: L3)

MODULE IV: Environmental Pollution and Water Chemistry

Environmental Pollution: Air pollutants: Sources, effects and control of primary air pollutants: Carbon monoxide, Oxides of nitrogen and sulphur, hydrocarbons, Particulate matter, Carbon monoxide, Mercury and Lead. Secondary air pollutant: Ozone, Ozone depletion.

Waste Management: Solid waste, e-waste & biomedical waste: Sources, characteristics & disposal methods (Scientific land filling, composting, recycling and reuse).

Water Chemistry: Introduction, sources and impurities of water; boiler feed water, boiler troubles with disadvantages -scale and sludge formation, boiler corrosion (due to dissolved O₂, CO₂ and MgCl₂). Sources of water pollution, Sewage, Definitions of Biological oxygen demand (BOD) and Chemical Oxygen Demand (COD), determination of COD, numerical problems on COD. Chemical analysis of water: Sulphates (gravimetry) and Fluorides (colorimetry). Sewage treatment: Primary, secondary (activated sludge) and tertiary methods. Softening of water by ion exchange process. Desalination of sea water by reverse osmosis.

(RBT Levels: L3)

MODULE-V: Instrumental methods of analysis and Nanomaterials

Instrumental methods of analysis: Theory, Instrumentation and applications of Colorimetry, Flame Photometry, Atomic Absorption Spectroscopy, Potentiometry, Conductometry (Strong acid with a strong base, weak acid with a strong base, mixture of strong acid and a weak acid with a strong base).

Nanomaterials: Introduction, size dependent properties (Surface area, Electrical, Optical, Catalytic and Thermal properties). Synthesis of nanomaterials: Top down and bottom up approaches, Synthesis by Solgel, precipitation and chemical vapour deposition, Nanoscale materials: Fullerenes, Carbon nanotubes and graphenes – properties and applications.

(RBT Levels: L1 & L2)

Course Outcomes: On completion of this course, students will have knowledge in:

- CO1: Use of free energy in equilibria, rationalize bulk properties and processes using thermodynamic considerations, electrochemical energy systems.
- CO2: Causes & effects of corrosion of metals and control of corrosion. Modification of surface properties of metals to develop resistance to corrosion, wear, tear, impact etc. by electroplating and electroless plating.
- CO3: Production & consumption of energy for industrialization of country and living standards of people. Electrochemical and concentration cells. Classical, modern batteries and fuel cells. Utilization of solar energy for different useful forms of energy.
- CO4: Environmental pollution, waste management and water chemistry.
- CO5: Different techniques of instrumental methods of analysis. Fundamental principles of nanomaterials.

Question paper pattern:

Note:- The SEE question paper will be set for 100 marks and the marks will be proportionately reduced to 60.

- The question paper will have **ten** full questions carrying equal marks.
- Each full question carries 20 marks.
- There will be **two** full questions (with a **maximum** of **three** sub questions) from each module.
- Each full question will have sub question covering all the topics under a module.
- The students will have to answer **five** full questions, selecting **one** full question from each module.

Text Books:

- 1. P.C. Jain & Monica Jain. "Engineering Chemistry", Dhanpat Rai Publications, New Delhi (2015 Edition).
- 2. S. S. Dara, A textbook of Engineering Chemistry, 10th Edition, S Chand & Co., Ltd., New Delhi, 2014.
- 3. Physical Chemistry, by P. W. Atkins, Oxford Publications (Eighth edition-2006).

Reference books:

- 1. O.G. Palanna, "Engineering Chemistry", Tata McGraw Hill Education Pvt. Ltd. New Delhi, Fourth Reprint (2015- Edition).
- 2. R.V. Gadag & A. Nityananda Shetty., "Engineering Chemistry", I K International Publishing House Private Ltd. New Delhi (2015- Edition).
- 3. "Wiley Engineering Chemistry", Wiley India Pvt. Ltd. New Delhi. Second Edition-2013.
- 4. B. Jaiprakash, R. Venugopal, Sivakumaraiah and Pushpa Iyengar, Chemistry for Engineering Students, Subhash Publications, Bengaluru, (2015- Edition).

VISVESVARAYA TECHNOLOGICAL UNIVERSITY, BELAGAVI

Engineering Chemistry Lab

(Common to all the branches)
[As per Choice Based Credit System (CBCS) scheme]
(Effective from the academic year 2018-19)

Course Code: 18CHEL16/26

No. of Hours/Week: 02

Total Hours: 42

Semester: I/II

Credits: 01(0:0:2)

Course objectives:

Course objectives: To provide students with practical knowledge of

- Quantitative analysis of materials by classical methods of analysis.
- Instrumental methods for developing experimental skills in building technical competence.

Instrumental Experiments

- 1. Potentiometric estimation of FAS using standard K₂Cr₂O₇ solution.
- 2. Conductometric estimation of acid mixture.
- 3. Determination of Viscosity co-efficient of the given liquid using Ostwald's viscometer.
- 4. Colorimetric estimation of Copper.
- 5. Determination of pKa of the given weak acid using pH meter.
- 6. Flame photometric estimation of sodium and potassium.

Volumetric Experiments

- 1. Estimation of Total hardness of water by EDTA complexometric method.
- 2. Estimation of CaO in cement solution by rapid EDTA method.
- 3. Determination of percentage of Copper in brass using standard sodium thiosulphate solution.
- 4. Determination of COD of waste water.
- 5. Estimation of Iron in haematite ore solution using standard K₂Cr₂O₇ solution by external indicator method.
- 6. Estimation of percentage of available chlorine in the given sample of bleaching powder (Iodometric method)

Course outcomes: On completion of this course, students will have the knowledge in,

CO1: Handling different types of instruments for analysis of materials using small quantities of materials involved for quick and accurate results.

CO2: Carrying out different types of titrations for estimation of concerned in materials using comparatively more quantities of materials involved for good results.

Conduction of Practical Examination:

- 1. Examination shall be conducted for 100 marks, later reduced to 60 marks.
- 2. All experiments are to be included for practical examination.
- 3. One instrumental and another volumetric experiment shall be set.
- 4. Different experiments shall be set under instrumental and a common experiment under volumetric.

Reference Books:

- 1. G.H. Jeffery, J. Bassett, J. Mendham and R.C. Denney, "Vogel's Text Book of Quantitative Chemical Analysis"
- 2. O.P. Vermani & Narula, "Theory and Practice in Applied Chemistry", New Age International Publishers.
- 3. Gary D. Christian, "Analytical chemistry", 6th Edition, Wiley India.

DEPARTMENT OF CHEMISTRY

<u>LESSON PLAN</u> – 2020-2021

SUBJECT: ENGINEERING CHEMISTRY
SUBJECT CODE: 18CHE12/22
EXAM.MARKS: 100 reduced to 60
HOURS PER WEEK: 04
TOTAL HOURS: 50
IA MARKS: 40

CLASS NO	MODUL E	TOPICS TO BE COVERED	TEACHIN G HOURS	% OF THE SYLLABUS COVERED
1		Electrochemistry and energy storage systems Thermodynamic functions: Definitions of free energy and entropy	nocks	COVENED
2		Cell potential, derivation of Nernst equation for single electrode potential		
3		Numerical problems on E, E ⁰ , and E cell		
4		Reference electrodes: Introduction, construction, working and applications of Calomel electrode		
5	T	Lab Session	10 HOUDS	200/
6	I	Ion-selective electrode Definition, construction and principle of Glass electrode, and determination of pH using glass electrode	10 HOURS	20%
7		Electrolyte concentration cells, numerical problems		
8		Introduction, classification - primary, secondary and reserve batteries.		
9		Construction, working and applications of Ni-MH and Li- ion batteries.		
10	-	Lab Session		
11		Corrosion and Metal Finishing: Introduction, Electrochemical theory of corrosion		
12		Factors affecting the rate of corrosion: ratio of anodic to cathodic areas, nature of metal, nature of corrosion product, nature of medium pH, conductivity and temperature		
13		Types of corrosion - Differential metal and Differential aeration - pitting and water line)		
14		Corrosion control: Anodizing Anodizing of aluminium, Cathodic protection - sacrificial anode and impressed current methods, Metal coatings - Galvanization		
15	V	Lab Session	10 HOURS	40%
16		Introduction, Technological importance. Electroplating:		
17		Principles governing electroplating-Polarization, decomposition potential and overvoltage		
18		Electroplating of chromium (hard and decorative). Electroless plating: Introduction		
19		Electroless plating of nickel & copper, distinction between electroplating and electroless plating processes		
20	1	Lab Session		

		Energy Systems:		
21		Introduction, classification, definitions of CV, LCV, and H CV		
22		Determination of calorific value of solid/liquid fuel using		
22		bomb calorimeter		
23		Numerical problems. Knocking of petrol engine -		
		.Definition, mechanism, ill effects and prevention		
24		Power alcohol, unleaded petrol and biodiesel		
25		Lab Session		
26	II	Introduction, differences between conventional cell and fuel	10 HOURS	60%
		cell, limitations & advantages		
27		Construction, working & applications of methanol-		
21		oxygen fuel cell with H2SO4 electrolyte, and solid		
		oxide fuel cell		
28		Photovoltaic cells- introduction, construction and		
		working of a typical PV cell		
29		Preparation of solar grade silicon by Union Carbide		
30		Process/Method. Advantages & disadvantages of PV cells. Lab Session		
		Environmental Pollution and Water Chemistry:		
		Air pollutants: Sources, effects and control of primary		
31		air pollutants: Carbon monoxide, Oxides of nitrogen		
		and sulphur, hydrocarbons		
32		Particulate matter, Carbon monoxide, Mercury and Lead.		
32		Secondary air pollutant: Ozone, Ozone depletion		
		Solid waste, e-waste & biomedical waste: Sources,		80%
33		characteristics & disposal methods (Scientific land filling,		
		composting, recycling and reuse)		
		Introduction, sources and impurities of water; boiler feed		
34		water, boiler troubles with disadvantages -scale and		
	IV	sludge formation	10 HOURS	
35	1,	Lab Session		
36		Boiler corrosion (due to dissolved O2, CO2 and		
		MgCl2). Sources of water pollution, Sewage		
37		Definitions of Biological oxygen demand (BOD) and		
37		Chemical Oxygen Demand (COD), determination of COD, numerical problems on COD		
		Chemical analysis of water: Sulphates (gravimetry) and		
38		Fluorides (colorimetry)		
		Sewage treatment: Primary, secondary (activated sludge)		
39		and tertiary methods. Softening of water by ion exchange		
		process. Desalination of sea water by reverse osmosis		
40		Lab Session		
41		Instrumental methods of analysis and Nanomaterials:		
41		Theory, Instrumentation and applications of Colorimetry		
42	117	Flame Photometry, Atomic Absorption Spectroscopy	10 HOUDS	1000/
43	III	Potentiometry, Conductometry (Strong acid with a strong	10 HOURS	100%
		base		
44		Conductometry - weak acid with a strong base, mixture		

	of strong acid and a weak acid with a strong base
45	Lab Session
46	Introduction, size dependent properties (Surface area,
	Electrical, Optical, Catalytic and Thermal properties)
47	Synthesis of Nanomaterials: Top down and bottom up
	approaches
48	Synthesis by Sol- gel, precipitation and chemical vapour
	deposition
49	Nanoscale materials: Fullerenes, Carbon nanotubes
	and graphenes properties and applications
50	Lab Session

Department of Chemistry Engineering Chemistry Course Material Links

- 1) https://bmsit.ac.in/dept/smaterial/chemistry
- 2) https://www.vtupulse.com/first-year-cbcs-notes/18che12-22-engineering-chemistry-notes/
- 3) https://www.youtube.com/channel/UCV05ohGnA1g6qnPOnu Qff9Q

Course Materials available in the department

- 1) Notes of all Topics
- 2) Full-fledged labs 2 nos.
- 3) Labs equipped with all instruments required for the regular experiments in the syllabus and for VTU exams.
- 4) Research Lab equipped for doing out of box experiments and for research activities
- 5) Models and few samples are available
- 6) Charts, Scientists photos, Periodic table etc are available and displayed in labs

BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT DEPARTMENT OF CHEMISTRY

Assignment -2

NAME OF THE STUDENT: SEMESTER: II

SECTION/BRANCH: D & E/ ISE ACADEMIC YEAR: 2020-21

1. 0.6g of coal sample with 92% C, 5% hydrogen and 3% ash, caused a rise in temperature of 2000g water by 3.2°C in a bomb calorimeter experiment. Calculate the gross and net calorific value of coal, water equivalent = 200g, specific heat of water= 4.187kJ/Kg/C, latent heat of steam= 587 calories/g (1cal= 4.187J) 5 Marks

2. On burning 0.75 x 10⁻³ kg of a solid fuel in a bomb calorimeter, the temperature of 2.5 kg water increased from 24⁰C to 28⁰C. The water equivalent of calorimeter and the latent heat of steam are 0.485 kg and 4.187 x 587 kJ/kg respectively. Specific heat of water is 4.187 kJ/kg/C, if the fuel contains 2.5% hydrogen; calculate its gross and net calorific values.

5 Marks

3. On burning 0.83 g of a solid fuel in a bomb calorimeter, the temperature of 3500g of water increased from 25.5 °C to 29.2 °C. Water equivalent of calorimeter is 385 g and latent heat of steam is 587cal/g. Calculate the gross and net calorific values of fuel if percentage of hydrogen in fuel is 0.7%.

5 Marks

4. Calculate GCV and NCV of a fuel from the following data: Mass of fuel=0.75g, Weight of water =1150g, water equivalent of calorimeter=350g, increase in temperature= 3.02°C, % of hydrogen=2.8, latent heat of steam =587 cal/g, specific heat of water is 4.187KJ/kg.

5 Marks

BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT **DEPARTMENT OF CHEMISTRY**

Assignment -2

USN: 1BY20[5065

NAME OF THE STUDENT: JITEN DRIYADEEP

SEMESTER: II

SECTION/BRANCH: D & E/ ISE

ACADEMIC YEAR: 2020-21

1. 0.6g of coal sample with 92% C, 5% hydrogen and 3% ash, caused a rise in temperature of 2000g water by 3.2°C in a bomb calorimeter experiment. Calculate the gross and net calorific value of coal, water equivalent = 200g, specific heat of water= 4.187kJ/Kg/C, latent heat of steam= 587 calories/ g (1cal= 4.187J)

W1 - Mass of water "in calorimetry inkg W2- mass water equivalent of the caloumeter in Kg At - t2-t1 = rise in temperature in c GCV = 49127. 46 KJ/kg M - Mass of Ruel in kg

S - Specific heat of water in kTkg-1c-1 NCV = (49127.46 - (0.09×5%.

× 587×4.187)

NEV = GCV - [0.09 × 4%. × latent heat of steam] NCV = 48021.46 KT/kg

Q(N = (2.2) (4.187) (3.2) $Q(6 \times 10^{-3})$

2. On burning 0.75 x 10⁻³ kg of a solid fuel in a bomb calorimeter, the temperature of 2.5 kg water increased from 24°C to 28°C. The water equivalent of calorimeter and the latent heat of steam are 0.485 kg and 4.187 x 587 kJ/kg respectively. Specific heat of water is 4.187 kJ/kg/C, if the fuel contains 2.5% hydrogen; calculate its gross and net calorific values. 5 Marks

<u>Sol:</u>- Gcv = (ω₁+ω₂) SΔt κJ/kg = (2.5+0.485)(4.187)(4) 0.75 × 10-3 $= 60^{\circ}$ $\Rightarrow | GCV = 66657.04 kJ/kg|$

NCV = GCV - (0.09 × H1. x latent heat = 66657.04-(0.09 x Q.5 x 4.187 x 587) NCV = 66104.04 KJ/Kg

3. On burning 0.83 g of a solid fuel in a bomb calorimeter, the temperature of 3500g of water increased from 25.5 °C to 29.2 °C. Water equivalent of calorimeter is 385 g and latent heat of steam is 587cal/g. Calculate the gross and net calorific values of fuel if percentage of hydrogen in fuel is 0.7%.

Sol:-
$$GCV = \frac{(W_1 + W_2)SAt}{m} kJ/kg$$

 $GCV = \frac{(3.5 + 0.385)(4.185)(3.7)}{0.83 \times 10^{-3}}$
 $GCV = 72513.29 kJ/kg$

NCV = GCV -
$$(0.09 \times 1.4 \times \text{latent heat})$$

= $72513.29 - (0.09 \times 0.7 \times 587 \times 4.187)$
=> $NCV = 72358.45 \times 1/\text{kg}$

4. Calculate GCV and NCV of a fuel from the following data: Mass of fuel=0.75g, Weight of water =1150g, water equivalent of calorimeter=350g, increase in temperature= 3.02°C, % of hydrogen=2.8, latent heat of steam =587 cal/g, specific heat of water is 4.187KJ/kg.

5 Marks

501:- NCV =
$$GCV = (0.09 \times ^{1} \cdot H \times \text{ Catent heat of Steam})$$

= $35289.48 - (0.09 \times 2.8 \times 587 \times 4.187)$
 $NCV = 24670.12 \times 1/kg$
 $GCV = (W_1 + W_2)SAt \times 1/kg$
= $(1.15 + 0.35) \times 4.187 \times 3.02$
 0.75×10^{-3}

18CHE12/22

First/Second Semester B.E. Degree Examination, Jan./Feb. 2021 Engineering Chemistry

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

a. What is single electrode potential? Derive Nernst equation for single electrode potential.

(07 Marks)

b. What are electrolyte concentration cells? Calculate the cell potential of the following call at 298 K.

 $Ag \mid AgNO_{3}(0.005M) \mid AgNO_{3}(0.5M) \mid Ag$

(06 Marks)

c. Explain the construction and working of Ni-MH battery. Mention its applications. (07 Marks)

OR

2 a. What are primary, secondary and reserve batteries? Explain with examples. (06 Marks)

b. Explain the construction and working of Li-ion battery. Mention its applications. (07 Marks)

c. What is glass electrode? Explain the determination of pH using glass electrode. (07 Marks)

Module-2

3 a. Define metallic corrosion. Explain the electrochemical theory of corrosion taking iron as an example. (07 Marks)

b. Explain: (i) Waterline corrosion and

(ii) Galvanic corrosion.

(06 Marks)

c. What is electroplating? Explain the electroplating of chromium.

(07 Marks)

OR

4 a. What is metal finishing? Mention any five technological importance of metal finishing.

(06 Marks)

b. What is electroless plating? Explain the electroless plating of copper with relevant reactions.

(07 Marks)

c. What is cathodic protection? Explain (i) Sacrificial anode (ii) Impressed current methods
(07 Marks)

Module-3

a. Define gross calorific and net calorific of a fuel. Calculate GCV and NCV of a sample of a coal from the following data:

Mass of fuel taken = 0.75 g, 3 14

Mass of water in the copper calorimeter = 2.5 kg

Water equivalent of calorimeter = 0.485 kg

Increase in temperature of water = 4°C

Specific heat of water = 4.187 kJ/kg/°C

Latent heat of steam $= 587 \times 4.187 \text{ KJ/kg}$

Percentage of hydrogen in fuel sample = 2.5

(07 Marks)

b. What are fuel cells? Describe the construction and working of Methanol-oxygen fuel cell.

(07 Marks)

c. What are PV cells? Mention their advantages and limitations.

(06 Marks)

2. Any revealing of identification, appeal to evaluator and /or equations written eg. 42+8 = 50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

OR

(06 Marks) What is knocking? Explain its mechanism. n. What is chemical fuel? Explain the experimental determination of calorific value of solid / (07 Marks) liquid fuel using Bomb calorimeter. Explain the preparation of Solar grade silicon by union carbide process. (07 Marks) Module-4 What is desalination of water? Describe the process of reverse osmosis of sea water. 7 (07 Marks) In a COD test 30.2 cm3 and 14.5 cm3 of 0.05 N FAS solution are required for blank and sample titration respectively. The volume of the test sample used was 25 cm3. Calculate the (06 Marks) COD of the sample solution. c. Mention the sources of sulphur dioxide pollution. Write down its ill effects and control (07 Marks) measure. OR (06 Marks) Explain the activated sludge treatment and sewage water. 8 "a. (07 Marks) What are the sources, effects and control of lead pollution? b. (07 Marks) What are the causes, effects and disposal methods of e-waste? Module-5 Explain the theory, instrumentation and application of conductometry. (07 Marks) 9 a. Explain the theory and instrumentation of potentiometry. (07 Marks) b. Explain the synthesis of nanomaterial by sol-gel technique. (06 Marks) What are nanomaterials? Explain the synthesis of nanomaterials by precipitation method. 10 a. (07 Marks) What are fullerenes? Write any four applications of fullerenes, (06 Marks) b.

Explain the theory and instrumentation of colorimetry.

(07 Marks)

Avalahalli, Doddaballapur Main Road, Bengaluru - 560064

FIRST INTERNAL ASSESSMENT TEST, JANUARY, 2021

Course Name	Engineering Chemistry	Course Code	18CHE12
Branch & Semester	H, I, J, K, L, M, & N	Date	28-01-2021
Name of the Course Coordinator (s)	Dr. Bincy Rose Vergis	Max. Marks	50

Note: Answer THREE full questions from Part A and Part B questions are compulsory.

	ote: Answer THREE juit questions from Fart A and Fart by questions are companied.	Mark	Cos/K
Q No.	PART A		COSTI
		S	00.1
1.	a. Define the following terms:	10	CO:1
	i) Single electrode potential ii) Standard electrode potential, iii) Free energy, iv) Entropy & v) Ion		K1
3	selective electrode.		
	OR		
	a. Derive Nernst equation for single electrode potential from thermodynamic principles.	5+5	CO:1
2.	a. Derive Nemst equation for single electrode potential from intermodynamic principles.	0 . 0	K1&2
	b. For Cd-Ag cell, $E^0_{Cd}^{2+}$ and $E^0_{Ag}^{+}$ are -0.4V and +0.8 V respectively. Write the electrodes, cell		11102
	representation, cell reactions and Calculate the EMF of the cell at 300 K.		
	(Given $[CdSO_4] = 0.01 \text{ M}$ and $[AgNO_3] = 0.2 \text{ M}$.)		
	The state of the s	6+4	CO: 1
3.	a. Explain electrolyte concentration cell? Give example. Derive Nernst equation for electrolyte	014	K1&2
1	concentration cell.		KI&Z
	b. The EMF of a cell, Fe/Fe ²⁺ (0.01)//Fe ²⁺ (C)/Fe is measured to be 2.78V at 300K. Calculate the		
	concentration, C.		
	OR		
4.	a. Explain construction and working of glass electrode.	4+6	CO:1
	b. How glass electrode can be used in the determination of pH of the given solution.	_	K1 & 2
5.	a. Give the classification of battery with example.	4+6	CO:1
	b. Explain construction and working of Ni-MH battery.		K1
	OR		
6.	a. Explain construction and working of Lithium ion battery with a neat diagram.	6+4	CO:1
	b. Explain why lithium is preferred as battery material and mention advantages of Lithium ion		K1
	battery.		
	PART B		
7.	With the knowledge of different aspects of electrode you have learned, write an innovative idea to	10	CO:1
	construct the most efficient battery and explain how do you measure its efficiency.		K4 & 5
8.	a. Which material do a prefer as the active battery material. Give reasons.	5+3+	CO:1
0.	b. Which is the anode material used in Lithium battery and why?		K3
		2	7.3
	c. Which material can be used as anode material in sodium battery?		

Course of	outcomes.
-----------	-----------

Students will be able to:

CO1: Understand the concept of free energy in equilibria and apply thermodynamic principles for the evaluation of electrochemical energy systems.

CO2: Evaluate the causes & effects of corrosion of metals and to prevent corrosion. Surface modification of metals to enhance the physical and mechanical properties by electroplating and electroless plating.

Blooms Taxonomy:

Signatures of the Question Paper Scrutiny Committee

K. Gurch T. Rangh Manual Course Coordinator(s)

Module Coordinator(s)

Program Coordinator

Head of the Department

Avalahalli, Doddaballapur Main Road, Bengaluru - 560064

FIRST INTERNAL ASSESSMENT TEST, JANUARY, 2021

Course Name	Engineering Chemistry	Course Code	18CHE12
Branch & Semester	H, I, J, K, L, M, & N	Date	28-01-2021
Name of the Course Coordinator (s)	Dr. Bincy Rose Vergis	Max. Marks	50

Note: Answer THREE full questions from Part A and Part B questions are compulsory.

Q No.	PART A	Marks	Cos/K
1.	i) Single electrode potential	2*5 = 10	CO:1
The same	ii) Standard electrode potential,		K1
	iii) Free energy,		
	iv) Entropy &		1
	v) Ion selective electrode.		
	OR		
2.	a. Derivation of Nernst Equation	5	CO:1
	b. Formula	1	K1&2
	Substitution with values	1	
	E0 Cell calculation	1	
	E cell calculation	1	1
	Units	1	
	1900年		
3.	a. Definition of electrolyte concentration cell	1	CO: 1
	Diagram with example	1	K1&2
	Representation	1	
	Reactions	2	
	Derivation of Nernst equation for electrolyte concentration cell.	1	
	Conclusion	1	1
	b. Formula	1	
	Substitution with values	1	
	C calculation	1	
	OR	-	
4.	a. Diagram	1	CO:1
	Representation	1	K1 & 2
	Construction	1	
	Working.	1	
	b. Cell diagram	1	1
	Cell representation	1	
	Boundary potential	1	
	Asymmetry potential	1 1	
1	Explanation	1	
	determination of pH of the given solution.	2	_
5.	a. 3 classifications of battery with example.	1+1+1+1	CO:1
١ .	b. Components	1	K1
	o. Componento	1	I VI

ge

	construction working of Ni-MH battery.	2 2	
	Reactions	1	
	OR		
6.	a. Components	1	CO:1
0.	construction	1	K1
	working of Ni-MH battery.	2	
	Reactions.	2	
	b. 2 reasons for why lithium is preferred as battery material	2	
	2 Advantages and mention advantages of Lithium ion battery.	2	
	PART B	1	
7.	Suggestion of electrode material	4	CO:1
. "	Why these materials are preferred	4	K4 & 5
	Advantages of using these materials	2	
-	a. Which material do u prefer as the active battery material.	2	CO:1
8.	Give reasons.	3	К3
	c. Which is the anode material used in Lithium battery and why?	3	
	d. Which material can be used as anode material in sodium battery?	2	

Course outcomes.

Students will be able to:

CO1: Understand the concept of free energy in equilibria and apply thermodynamic principles for the evaluation of electrochemical energy systems.

CO2: Evaluate the causes & effects of corrosion of metals and to prevent corrosion. Surface modification of metals to enhance the physical and mechanical properties by electroplating and electroless plating.

Blooms Taxonomy:

Remembering (K1) Understanding (K2)	Applying (K3)	Analyzing (K4)	Evaluating (K5)	Creating (K6)
-------------------------------------	---------------	----------------	-----------------	---------------

Avalahalli, Doddaballapur Main Road, Bengaluru - 560064

SECOND INTERNAL ASSESSMENT TEST, FEBRUARY, 2021

Course Name	Engineering Chemistry	Course Code	18CHE12
Branch & Semester	H, I, J, K, L, M, & N	Date	25-02-2021
Name of the Course	Dr. Jyoti Roy Choudhuri	Max. Marks	50

Note: Answer THREE full questions from Part A and Part B questions are compulsory.

Q No.	Note: Answer THREE full questions from Part A and Part B questions are compulsory. PART A	Marks	Cos/ K
1.	a) What is Electroplating?b) Explain the process of electroplating of Hard and Decorative Chromium.	3+7	CO:1 K1
	OR		
2.	a) What is corrosion?b) Explain the electrochemical theory of corrosion considering Iron (Fe) as an example.	2 + 8	CO:1 K1& 2
3.	 a) 0.6g of Coal sample (carbon-90%, Hydrogen-3% and ash 7%) was subjected to combustion in a bomb calorimeter. Mass of water taken in the calorimeter was 2000g & the water equivalent of the calorimeter was 400g. The rise in temperature was found to be 3.0°C. Calculate the gross and net calorific values of a sample (Specific heat of Water = 4.187kJ/kg/°C; Latent heat of steam= 2454 kJ/kg). b) Write a short note on Pitting corrosion. 	6+4	CO: 1 K1& 2
	OR		
4.	a) What is Gross calorific value?b) Explain the experimental determination of calorific value of solid fuel using bomb calorimeter.	2+8	CO:1 K1 & 2
5.	Write a brief note on the following terms: i) Unleaded Petrol ii) Bio-diesel, iii) Power alcohol.	3+4+3	CO:1 K1
	OR	-	20.1
6.	a) What is fuel cell?b) Explain the construction, working and uses of methanol-oxygen fuel cell.	2+8	CO:1 K1
	PART B		
7.	A Honda motorbike is giving a low mileage for the usage of a particular petrol, suggest your innovative ideas regarding increasing the petrol efficiency to obtain higher mileage.	10	CO:1 K4 & 5
8.	a) What is a corrosion inhibitor?b) Explain the four different types of corrosion inhibitors.	2+8	CO:1 K3

Course outcomes	
CO2: Evaluate the causes & effects of corrosion of metals and to prevent corrosion. Surface modification of metals to enhand Copysical and mechanical properties by electroplating and electroless plating.	e the
CO3: Identify sustainable energy sources and its utilization for the improved living standards of people and better industrialize of country.	ation
Blooms Taxonomy	
K1: Remember, K2: Understand, K3: Apply, K4: Analyze, K5: Evaluate, K6: Create	

	Signatures of the Question	on Paper Scrutiny Committee		
	J. Roy Char Shuri	K-Sunkrun		Bank-, tupp!
H	Course Coordinator(s)	Module Coordinator(s)	Program Coordinator	Head of the Department

Avalahalli, Doddaballapur Main Road, Bengaluru - 560064

SECOND INTERNAL ASSESSMENT TEST, FEBRUARY, 2021

Module Coordinator(s) Program Coordinator Head of the Department Course Coordinator(s)

SCHEME OF VALUATION

Q.	Solution	Marks	Total Marks
No.		Distribution	
	PART A		0.0
1.a	Electroplating definition	2	02
1.b	Hard and Decorative Electroplating explanation	2+2	08
	Reactions	4	
	OR		02
2.a	Corrosion definition	2	02
2.b	Electrochemical theory aspects and explaination	4	08
	Reactions	4	
3. a	Formula of GCV and NCV	2	06
	Calculation	2	
	Unit	2	
3.b	Pitting Corrosion definition and example	2	04
	Reactions and features	2	
	OR		
4.a	GCV Definition	2	02
	Principle	2	08
4.b	Components	2	
	Formula and Derivation	2	
	Diagram	2	_
5.	Unleaded Petrol Definition, Compound used and application	3	10
	Bio-diesel Definition, Compound used, Reactions and application	4	
	Power Alcohol Definition, Compound used and application	3	
	OR		
6.a	Fuel Cell definition	2	02
6.b	Cathode, Anode and Electrolyte	3	08
	Cell reactions, diagram	3+2	
	PART B		
	Compression ratio concept	3	
7.	Knocking and anti-knocking agents application	4	10
	Power alcohol application	3	
	PART E		
	Corrosion Inhibitor definition	2	10
8	4 types of corrosion inhibitor definition	2+2+2+2	

Avalahalli, Doddaballapura Main Road, Bengaluru - 560064

THIRD INTERNAL ASSESSMENT TEST, MARCH/APRIL 2021

Course Name	ENGINEERING CHEMISTRY	Course Code	18CHE12
Branch &Semester	H, I, J, K, L, M and N	Date	31-03-2021
Name of the Course	Dr Sudheer Kumar K H	Max. Marks	50
Coordinator (s)	Di Duanos III		

Note: Answer THREE full questions from Part A and Part B questions are compulsory.

Qn.	vote:	Answer THREE full questions from Part A and Part B questions are compulsor PART A	Marks	CO/K
No. 1.	a. Explain primary and secondary treatments (Activated sludge) of sewage water. Write a note on boiler corrosion.		6 M	CO4 K:2
	b.		4 M	
		OR		
2.	a.	Explain the determination of fluoride concentration in water by SPADNS-colorimetric method.	10 M	CO4 K:2
植物	VO.F	的是一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个	17.	九州之。15
3.	a.	What is photovoltaic cell?	2 M	CO3
	b.	Explain the manufacture of solar grade silicon by Union Carbide process.	8 M	K:2
		OR		
4.	a. b.	What is COD? Explain the determination of COD of waste water. 50cm ³ of sewage water was refluxed with 20cm ³ of 0.1N acidified K ₂ Cr ₂ O ₇ .	7 M	C04
		The uncreated acidified K ₂ Cr ₂ O ₇ consumed 10.2cm ³ of 0.1N FAS. 25cm ³ of 0.1N acidified K ₂ Cr ₂ O ₇ when titrated under identical conditions consumed 31.1cm ³ of 0.1N FAS. Calculate the COD of the sewage water.	3 M	K:2
7 206		1000 1000 1000 1000 1000 1000 1000 100	位置是是	CFL CALL
5.	a.	Explain theory, instrumentation and applications of Atomic absorption spectroscopy.	10 M	CO5 K:2
		OR		
)	a.	Explain the principle of conductometric titration and explain its applications for all types of acid-base titrations (strong acid v/s strong base, weak acid v/s strong base and mixture of acids v/s strong base).	10 M	CO5 K:2
E.F.		PART B		
7.	a.	Turning waste into power is one of the most significant innovations in the waste management industry. Give your innovative ideas for waste management.	10 M	CO4 K:4
8.	a.	What is the pH of drinking water?	2 M	CO4
0.	b.	What are the implications of water pH on human health?	3 M	K:4
	c.	How to do testing of water pH?	2 M	
	d.	How to treat pH in drinking water?	3 M	

Avalahalli, Doddaballapura Main Road, Bengaluru - 560064

THIRD INTERNAL ASSESSMENT TEST, MARCH/APRIL 2021

Course outcomes (COs)

CO1: Understand the concept of free energy in equilibria and apply thermodynamic principles for the evaluation of electrochemical energy systems.

CO2: Evaluate the causes & effects of corrosion of metals and to prevent corrosion. Surface modification of metals to enhance physical and mechanical properties by electroplating and electroless plating.

CO3: Identify sustainable energy sources and its utilization for the improved living standards of people and better industrialization of country.

CO4: Understand the impact of various types of pollution on environment and human beings and to control the factors affecting pollution by proper waste management.

CO5: Quantitative and qualitative analysis of materials by using different instruments. Understand the importance of nano materials and to study synthesis, properties and applications for industrial revolution

Bloom's Category Evaluating Understanding Analyzing Applying Remembering (K5)(K4)

(K2)

(K1)

(K3)

Signatures of the Question Paper Scrutiny Committee

09/03/2021	Wet -		Ramphylygy. T
Course	Module	Program	Head of the
Coordinator(s)	Coordinator(s)	Coordinator	Department

Creating

(K6)

SCHEME OF VALUATION

BMSINSTITUTE OF TECHNOLOGY AND MANAGEMENT

Avalahalli, Doddaballapura Main Road, Bengaluru - 560064

THIRD INTERNAL ASSESSMENT TEST, MARCH/APRIL 2021

Q. No.	Solution	Marks Distribution	Total Marks
	DADE A		
	PART A	2	
	Primary Treatment	3	06
1.a	Secondary Treatment	3	00
	Boiler Corrosion: CO2	1	0.4
1.b	O2	1	04
	MgCl2	2	
2.a	Principle	2	0.0
	Explanation- Bleaching Action	3	08
	Procedure	3	
3.a	Definition of PV cell	2	02
3.b	Union Carbide Process- Reactions	8	08
3.0	with explanation		
	Definition of COD	2	
4.a	Procedure to determine COD	4	07
	Formula to calculate COD	1	
4.b	Formula	1	03
	Substitution	1	
	Final value with unit	1	,
	Principle of AAS	2	
5.a	Neat labelled diagram of	2	10
	instrument		
	Explanation of working of	4	
	instrument		
	Applications	2	
	Principle of conductometry	2	
	Strong acid Vs Strong base	3	
6.a	Weak acid Vs Strong base	3	10
	Acid Mixture Vs Strong base	2	
	PART B		
7	Innovative ideas on waste	10	10
	management		10
	a	2	
	b	3	
8	С	2	10
	d	3	10

Avalahalli, Doddaballapura Main Road, Bengaluru - 560064

FOURTH INTERNAL ASSESSMENT TEST, MARCH/APRIL 2021

Course Name	ENGINEERING CHEMISTRY	Course Code	18CHE12
Branch &Semester	H, I, J, K, L, M and N	Date	05-04-2021
Name of the Course Coordinator (s)	Dr Jyothi C Abbar	Max. Marks	50

Note: Answer **THREE** full questions from **Part A**; and **Part B** questions are compulsory.

Qn. No.		PART A	Marks	CO/K
1.	a.	Define Knocking? Explain the mechanism of knocking in petrol engine.	6 M	CO3
	b.	Define GCV & NCV.	4 M	K:2
		OR		
2.	a.	Define Reference electrode?	2 M	CO1
à	b.	Explain construction, working & applications of Calomel electrode.	8 M	K:2
THE R	131			101001
3.	a.	Calculate the EMF of the following Concentration cell at 298 K.	4 M	CO1
•		$Ag_{(s)}/Ag^{+}(0.01M)//Ag^{+}(0.5M)/Ag_{(s)}$	6 M	K:2
	b.	A galvanic cell is constructed by coupling Ag and Cd electrodes dipped in 0.5		
		M AgNO ₃ and 0.25 M CdSO ₄ respectively at 25 °C. Write the cell reactions		
	1	and calculate EMF of the cell. Given that std. reduction potentials of Ag and		
		Cd are +0.80 V and -0.40 V respectively.		
		OR		
4.	a.	What are the sources, effects and control of oxides of Sulphur pollution?	6 M	CO4
	b.	What are the sources, effects and control of Lead pollution?	4 M	K:2
		ELL CONTROL OF THE PROPERTY OF		
5.	a.	Derive Nernst equation for Single electrode potential.	10 M	CO1
		F. A an		K:2
		OR		*
6.	a.	Write a note on Unleaded Petrol.	4 M	CO3
)	b. A coal sample containing 92% C, 7%H ₂ , and 3% Ash is subjected to combustion in a bomb calorimeter. Calculate the Gross and Net Calorific values. Given the mass of coal sample is 0.85 x 10 ⁻³ kg. Mass of water in copper calorimeter is 2 kg, water equivalent of calorimeter is 0.75 kg, rise in temperature of water is 2.5 °C, latent heat of steam is 2454 KJ/Kg and specific heat of water is 4.187 KJ/Kg/°C		6 M	K:2
1-3		PART B		THE RESERVE
7.	a.	Air pollution is of largest risk to public health globally. Suggest your innovative ideas to combat air pollution.		CO4 K:4
8.	a.	What is nano catalyst? Name the nano catalyst used for the degradation of Waste Frying Oil to produce Biodiesel.	3 M	CO3 K:4
	b.	Mention the different techniques employed for the surface characterisation of the nano catalyst.	4 M	/
	c.	According to the literature study, why incorporating graphene oxide with metal oxides seems efficient?	3 M	

Avalahalli, Doddaballapura Main Road, Bengaluru - 560064

FOURTH INTERNAL ASSESSMENT TEST, MARCH/APRIL 2021

Course outcomes (COs)

CO1: Understand the concept of free energy in equilibria and apply thermodynamic principles for the evaluation of electrochemical energy systems.

CO2: Evaluate the causes & effects of corrosion of metals and to prevent corrosion. Surface modification of metals to enhance physical and mechanical properties by electroplating and electroless plating.

CO3: Identify sustainable energy sources and its utilization for the improved living standards of people and better industrialization of country.

CO4: Understand the impact of various types of pollution on environment and human beings and to control the factors affecting pollution by proper waste management.

CO5: Quantitative and qualitative analysis of materials by using different instruments. Understand the importance of nano materials and to study synthesis, properties and applications for industrial revolution

Bloom's Category

Remembering Understanding Applying Analyzing Evaluating Creating (K1) (K2) (K3) (K4) (K5) (K6)

Signatures of the Question Paper Scrutiny Committee

Qui.			Rounk Ish per
Course	Module	Program	Head of the
Coordinator(s)	Coordinator(s)	Coordinator	Department

Avalahalli, Doddaballapura Main Road, Bengaluru – 560064

Department of Chemistry SCHEME OF VALUATION

FOURTH INTERNAL ASSESSMENT TEST, MARCH/APRIL 2021

Q. No.	Solution	Marks Distribution	Total Marks	
	PART A			
	Definition:Knocking	2		
1.a	Mechanism with reaction	4	06	
	Definition:GCV	2		
1.b	Definition:NCV	2	04	
2.a	Definition:Reference Electrode	2	02	
2. b	Diagram	1	08	
	Construction	2		
	Working	3]	
	Application	2	1	
3.a	Formula	1	04	
	Substitution	1	1	
	Final value with unit	2	1	
	Cell reactions	2	06	
2.1	Formula with EMF Calculation	1		
3.b	Formula	1		
	Substitution, Final value with unit	2		
	Sources	. 2		
4.a	Effects	2	06	
	Control	2		
4.b	Sources	1	04	
	Effects	1	1	
	Control	2	1	
	Wmax eqn	1		
5.a	Vant Hoff eqn	1	10	
	Reduction reaction	1	1	
	Further derivation with neat steps	7	1	
6.a	Explanation	04	04	
6.b	Formula of GCV NCV	02	06	
	Substitution	02		
	Final Value with Unit	02		
	PART B			
7	Innovative ideas on Air pollution prevention	10	10	
	a Definition, Name of nanocatalyst	2+1	10	
	b Name of 4 techniques	4		
8	c Graphene oxide properties	3		

DEPARTMENT OF ENGINEERING CHEMISTRY

LABORATORY MANUAL

(For First year B.E. students)

Name of the Student :	
Semester :	Section:
University Seat No. :	Roll No.:
Batch :	Subject Code: 18CHEL16/26

Yelahanka, Bangalore - 64

To emerge as one of the finest technical institutions of higher learning to develop engineering professionals who are technically competent ethical and environment friendly for betterment of the society.

Accomplish stimulating learning environment through high quality academic instruction, innovation and industry - institute interface.

DEPARTMENT OF CHEMISTRY

To aspire, achieve and sustain, for excellence in academics.

To nurture the young minds and to bring awareness and flair for chemistry by personal attention and good guidance.

ENGINEERING CHEMISTRY LAB COURSE OUTCOMES

Create awareness of pollution norms/industrial effluents

Apply knowledge about chemical analysis for industrial materials

Select the lubricant in various industries depending on the requirement

DEPARTMENT OF CHEMISTRY B. E. I/II SEM

Expt. No	Date	Title of the Experiment	Marks
		(A) INSTRUMENTAL EXPERIMENTS	
1.		Determination of viscosity coefficient of a given liquid using Ostwald's viscometer	
2.		Colorimetric estimation of Copper	
3.		Conductometric estimation of an Acid mixture using standard NaOH solution	
4.		Potentiometric estimation of FAS using standard K ₂ Cr ₂ O ₇ solution	
5.		Determination of pKa value of a weak acid using pH meter	
6.		Flame photometric estimation of Sodium and potassium in the given sample of water.	
		(B) VOLUMETRIC EXPERIMENTS	
7.		Determination of Total Hardness of a sample of Water using Disodium salt of EDTA	
8.		Determination of CaO in the given sample of Cement by Rapid EDTA method	
9.		Determination of Percentage of Copper in Brass using standard Sodium thiosulphate solution	
10.		Determination of Iron in the given sample of Haematite ore solution using Potassium dichromate Crystals by external indicator method	
11.		Determination of COD of the given Industrial Waste water sample	
		Determination of Total Alkalinity of a given Water	

~Vincent 7. Lombardi

Instrumental Experiments

Record of observation:

1. Laboratory temperature $= \dots 0^{0}$ C

2. Density of water $= d_w = \dots g/cc$

3. Viscosity co-efficient of water $= \eta_w = \dots$ mpoise

4. Density of given liquid = d_1 =.....g/cc

Tabulation: Flow Time Measurement

Liquid	Time of Flow in "seconds"
	1.
	2.
Given liquid (t _l)	3.
	Mean time $t_1 = \dots $
	1.
Water (t _w)	2.
	3.
	Mean time $t_w = \dots s$

Title of the Experiment:

Determination of Viscosity co-efficient of a given liquid using Ostwald's Viscometer

Experiment No.: 1 Date:

Principle:

Viscosity of a liquid may be defined as the resistance that one part of a fluid offers to the flow of another part of the liquid. Viscosity is produced by the shearing effect of moving one layer of the fluid past another. It may be thought as caused by the internal friction of the molecule themselves. When a liquid is in laminar flow through a tube the layer close to the surface of the tube is almost stationary and the layer at the axis of the tube moves faster than any other layer. A slow moving layer exerts a friction on its nearest layer. The coefficient of viscosity (η) is defined as the force per unit area required to move a layer of fluid with a unit velocity difference past another parallel layer at unit distance away. In cgs system of units, the coefficient of a fluid is expressed in poises.

The viscosity coefficient of a liquid is given by Poiseuille's equation.

$$\eta = \frac{\pi P r^4 t}{8vl} = \frac{\pi h dg \ r^4 t}{8vl}$$

where v is the volume of the liquid of viscosity coefficient (η) which flows in time t through a capillary tube of radius r and length l under a pressure head of P.

We know that, $\rho = hdg$, where, h = height, d = density, g = acceleration due to gravity.

If equal volumes of two liquids are allowed to flow through the same capillary under identical conditions,

$$\frac{\mid \eta \mid_l}{\mid \eta \mid_w} = \frac{\mid \pi \mid h d_l g \mid r^4 t_l}{\mid 8 v l \mid} \times \frac{\mid 8 v l \mid}{\mid \pi \mid h d_w g \mid r^4 t_w \mid} = \frac{d_l t_l}{d_w t_w}$$

The flow times for the liquid and water are determined in Ostwalds viscometer. Knowing the densities of the liquid and water and also knowing the viscosity coefficient of water, viscosity coefficient of liquid can be calculated. Since viscosity is dependent on temperature the measurement can be carried out in water bath to reduce the change in temperature.

Calculation:

Viscosity coefficient of the given liquid, $\eta_l = \frac{d_1 \times t_1}{d_w \times t_w} \, \times \, \eta_w$

=

=

= m poise at° C

Ostwald's Viscometer

Procedure:

Take a clean and viscometer and fix the viscometer vertically to a stand. Using a burette transfer a known volume (say 10 ml of the lower bulb) of water through wider limb. Suck the water above the upper mark of the viscometer. Allow it to flow freely through the capillary, when the level of the water just crosses upper mark, start the stop clock and when the water just crosses the lower mark, stop the stop clock. Note down the time of flow in seconds (t_w) . Repeat the same procedure twice.

Pour out the water, rinse the viscometer with acetone and dry it. Repeat the experiment by taking exactly the same volume (as that of water) of the given liquid whose viscosity is to be determined and record the time of the flow in seconds (t_1) . Repeat the procedure to get agreeing values.

Staff Signature

Tabulation:

Filter with wavelength _____ is selected as it shows maximum Optical Density for Cu²⁺ ions.

Flask Number	Volume of CuSO ₄ in cc 'V'	Optical density	Weight of CuSO ₄ (5 × V) mg	Weight of Copper (1.2724 × V) mg
Blank	0			
1	5			
2	10			
3	15			
4	20			
5 (Test solution)	(Ux)			

Nature of Graph:

PRACTICAL EXAMINATION SCHEME OF VALUATION

Subject: Engg. Chemistry Lab. Subject code: 18CHEL16/26

Description	Max. Marks	Part A marks	Part B Marks
Procedure write up	15	08	07
Conduction	52	26	26
Calculation, Graph works and result	18	09	09
Viva-Voce	15	07	08

PART – A : INSTRUMENTAL						
Potentiometry, Colorimetry & Flame Photometry(Na/K)		pK _a and Viscosity		Conductometry		
Error (cm ³)	Marks	Error (%)	Marks	Error (cm ³)	Marks	
± 0.5	26	± 5.0	26	± 0.5	13 + 13	
± 0.51 to 0.6	24	± 5.1 to 6.0	24	± 0.51 to 0.6	11+11	
± 0.61 to 0.7	22	± 6.1 to 7.0	22	\pm 0.61 to 0.7	10+10	
± 0.71 to 0.8	20	± 7.1 to 8.0	20	± 0.71 to 0.8	8+8	
± 0.81 to 1.0	18	± 8.1 to 10.0	18	± 0.81 to 1.0	6+6	
> ± 1.0	Zero	> ± 10.0	Zero	> ± 1.0	Zero	
Graph: 5 marks Calculation: 4 marks		pK _a : Two Graphs Viscosity: Calcula		Graph Calculation	: 5 marks : 4 marks	

PART – B : VOLUMETRY				
Total Hardness, CaO in Cement, Cu in Brass, Fe in Haematite, COD, Total alkalinity,				
Error (cm ³) Marks				
± 0.2	13 + 13			
± 0.3	11 + 11			
± 0.4	9+9			
± 0.5	7 + 7			
± 0.6 5+5				
> ± 0.6	Zero			

Calculation: 9 Marks

Note: Best Two(out of Three) TITRE values should be considered for valuation

BIMIS

INSTITUTE OF TECHNOLOGY AND MANAGEMENT Yelahanka, Bengaluru - 560 064.

RECORD

NAME	SREETHK	UNIVERSITY SEAT NUMBER (USN	18425 1197
PROGRAMME	CSE	SEMESTER/ SECTION	T/C
course codi	19.CHELZC	COURSE NAME	CHEM 2 Lab

B.M.S. INSTITUTE OF TECHNOLOGY AND MANAGEMENT

Yelahanka, Bengaluru - 560 064

RECORD OF PRACTICAL WORK

NAME	Sneedlk. G	UNIVERSITY SEAT NUMBER (USN)	13420CS187
PROGRAMME	BE-CSE	SEMESTER/ SECTION	I/C
COURSE CODE	18 CHE 16/26	COURSE NAME	CHem 'Lab

B.M.S. INSTITUTE OF TECHNOLOGY AND MANAGEMENT Yelahanka, Bengaluru - 560 064

LABORATORY CERTIFICATE

		A Care
	This is to Certify that Mr. / Ms. Speedlek Gratopall	Laker Laker
	has Satisfactorily completed the course of experiments in Practical	14.
	Engineering Chemistory lab Prescribed	. 4 4 .
	by the Visvesvaraya Technological University for	
	Semester	
	in the year 2020 - 20 21	
	Head of the Department Staff incharge of the Batch	
,	Date :	
	Marks Name of the Candidate: Succellikes	•
	Maximum Obtained Roll No: 187 USN: 18420CS18	7

Particulars of the Experiments Performed CONTENTS

Expt No.	Date	Experiment	Marks Obtained	Page No.
-	116/21	Determination of Total hardness	20/20	1
(-r	•	Determination of Total hardness of water sample using disodium salt of EDTA		
2	11/6/21	Determination of Cao Ingren coment solution	30/50	4
+ "1"	i i	given comery source	1,12,0	72.
3	18/6/21	Polentiometric Estimation of this wing old Kz Gzo, som	30/30	6
4	18/6/21	Determination of Pka of weak acold wing pt meter	36/30	9
5	25 16/21	Conductometors Estemation of an acid minhore using stel NaOH solution	30/30	1.2
6	25/6/21		30/30	14
7.	2 17/21	Determination of Viscostry Coefficient of a given 19quid using Ostanld's Viscometer	30/30	M
8	2/7/21	Determination of percentage of Hopper In bosons using Sld Jodfum Throsulpha	eofro	19

Particulars of the Experiments Performed CONTENTS

Expt No.	Date	Experiment	Marks Obtained	Page No.
1	1	Solution.		
1	- 1			
q	917/21	Detormination of Son m the	30/30	92
		gren sample at bacmable		26
		Octomination of Alon in the gren sample of bacmable	1 1	(2
	1	the same of the sa		
To	9/1/21	Petermination at cos of the green maistrial wayse water sample.	30/30	25
~ 1	4 **	gren Industrial wayle	(1 V 11	3
- 4	1	water sample.		
()				
	D 9 1		-12187	Į,
			1	
T	_ \			
	16 7 1 - 1		E1 1/ 12	
	\			~-
			- 11	
	78 Y 1 1 .		\	,
	\			-4
1-1		I do t		1 7
	13.1 1 1 2			1
		The state of the s		
			4	
		De sea es		

Expt. No.	Page No
Determination of T	otal handness of a sample
of water using Disodim	salt of EDFA
	V
Principle +	in suret is recommended
	to the presence of calcium
	or. Ethylenediamine tetoraacesc
calsons Indudes Catha und M	9+2 four The fore the hardness
of water may be determined	by tetraking a known
Volume of water sample win	In standard Solution of EDTA
	us an Indicator. Hecandingly, it
ts possible to determine the	total handness of water
using EDTA oneagent.	a la
HOOC-CH2 CH2-600 H	6 H (60 N)
N-CH2-CH2-N	H006-CHZ CH2-(00 Na
	N-CH2-CH2-N VOLGOC-CH2 CH-COOH
EDTA (H, Y)	C.2
	Naz Hz Y
The EDTA molecule (Hy Y) has	
may be generesented as Hy	The latter form complenes
with metal sons as follows.	
M2+ + H2 Y2-	MY2-+2H+(1)
- C - C - C - C - C - C - C - C - C - C	Teacher's Signature :

BATCH: 2020 SEM: || SUBJECT: Engineering Chemistry SESSION: Dec-20 BRANCH: INFORMATION SCIENCE

	* ******			
	 ,		 	

TARGET	LEVEL					
60% of students must score 60% marks & above	3		3	strongly related		
55% of students must score 60% marks & above	2	PO AND CO SCALE	20 412 60 6611	2	2	moderately related
50% of students must score 60% marks & above	1		1	less related		

OURSE TCOME S	ATTAINMENT LVL-I A	ATTAIN MENT LVL- UNIVERS ITY	OVERALL ATTAINME NT LVL
CO1	3.00	3.00	3
CO2	3.00	3.00	3
соз	3.00	3.00	3
CO4	3.00	3.00	3
CO5	3.00	3.00	3
ASS STRE		64	3
TARGET	!	60%	

BATCH	2020			
SEM	I			
SUB	Engineering Chemistry			
SESSION	MAY 2021- SEP 2021			
Class Strength	64			
Set Target	60%			
Target >=	60%			
3	60%			
2	55%			
1	50%			
No. of COs	5			

Program outcomes									
COURSE OUTCOME		CO_1		CO_2		CO_3	CO_4	co_5	
Name		_	SCORES	_	SCORES	SCORES	SCORES OR	 	conss
			OR GRADIN		OR GRADIN	OR GRADIN	OR GRADIN		SCORES OR GRADING
		Total	percentae ON Target		T2-01 T2-02 T2-07 Total percenta ON Target T2-0	Total percenta BASED	Total percenta BASED	Total pero	BASED ercentag ON Ta
MAXIMUM MARKS FOR	10 10 10 10	40	SCALE ≥ 60	T1-Q3 T1-Q4 T1-Q5 T1-Q6 T1-Q8 10 10 10 10 10 10	10 10 10 90 % SCALE ≥ 60 10	1 10 10 10 10 50 60 60	T3-Q1 T3-Q2 T3-Q3 T3-Q5 T3-Q6 T3-Q8 Total percenta ON Target 10 10 10 10 10 10 10 60 % SCALE 60	10 10 10 30	SCALE OF
QUESTION 10	6		80 3 y		OF3	10 9 8 27 30 90 3 y			50 2
2 ABDUL SADIQ 10	9 8	27 30	90 3 y	9 6 10	5 3 33 50 66 3 y	10 9 8 27 30 30 3 y	10 8 10 10 38 40 95 3 y		100 3
3 ABHA NAIR 9	8	17 20	85 3 y	10 9 9	8 3 39 50 78 3 y	10 10 10 30 30 100 3 y	10 9 10 10 39 40 98 3 y	10 10 20 20	100 3
4 ABHINAV DADHICH 10	7	17 20	85 3 y	6 6 8		10 10 10 30 30 100 3 y	10 9 8 10 37 40 93 3 y	8 8 16 20	
5 ABHINAV JHA 9 6 ABHISHEK KUMAR SINHA 9	9 6	24 30 24 30	80 3 y		5 7 36 50 72 3 y	9 10 10 29 30 97 3 y 10 8 10 28 30 93 3 y		0 4	80 3
ABHISHEK RAJ 8	9 6	24 30	80 3 y 77 3 y		8 7 38 50 76 3 y 4 7 36 50 72 3 y	10 8 10 28 30 93 3 y 10 10 10 30 30 100 3 y	8 7 8 10 33 40 83 3 y 10 5 9 10 34 40 85 3 y		3
ABHISHEK RAIPUT 9	4 2	15 30	50 2	4 3 4	8 7 26 50 52 2	9 6 10 25 30 83 3 y	9 7 9 10 35 40 88 3 y		
ABHISHEK SHANKAR ()	7 6	13 20	65 3 y	6 5 9	8 8 36 50 72 3 y	6 8 10 24 30 80 3 y	8 7 8 10 33 40 83 3 y	8 6 14 20	
ADDAGALLA SAI 9 MANASWINI 9	9 8	26 30	87 3 y	9 8 9		10 9 10 29 30 97 3 y	10 8 9 10 37 40 93 3 y	9 8 17 20	3
ADDITHYA JOSHI	10 4	14 20	70 3 y	6 8 7	8 7 36 50 72 3 y	8 6 10 24 30 80 3 y	8 9 10 10 37 40 93 3 v		
ADITI MALLICK ADITYA GOUR 10	10 8	18 20 20 20	90 3 y 100 3 y	8 5 8 9 6 10	6 10 37 50 74 3 v 8 10 43 50 86 3 v	10 9 10 29 30 97 3 y 10 10 10 30 30 100 3 y	10 8 10 10 38 40 95 3 y 10 9 8 10 37 40 93 3 y	8 10 18 20	
ADITYA PAL 10	6	16 20	80 g v	7 5 9	8 7 36 50 72 3 y	10 9 10 29 30 97 3 v	10 9 9 10 38 40 95 3 v	9 6 15 20	
AHAANA SINGH	10 10	20 20	100 3 y	9 10 9	6 8 42 50 84 3 y 10	9 8 27 30 90 3 v	10 8 9 10 37 40 93 3 v	9 9 10	90 3
AJAY V KAMATH 10	6 8	24 30 15 20	80 3 y	6 0 5 10	4 10 35 50 70 3 y	6 6 9 21 30 70 3 y	6 6 7 10 29 40 73 3 v	7 8 15 20	75 3
AKANKSH P N AKHILA A R 9	9 0 6	15 20 24 30	75 3 y	0 9 8 9 9 7 9	8 7 41 50 82 3 v 6	9 9 24 30 80 3 v	7 9 9 10 35 40 88 3 V 10 9 9 10 38 40 95 3 V	9 4 13 20 9 10 19 20	
AKSHAY KUMAR R 9	10 6	25 30	83 3 y	10 8 7	8 7 40 50 80 3 y	10 8 10 28 30 93 3 y 8 9 10 27 30 90 3 y	9 8 9 10 36 40 90 3 y	6 6 10	
AMAN TRIPATHI 8	6	14 20	70 3 y	7 6 9	8 7 37 50 74 3 y	10 9 10 29 30 97 3 y	8 9 9 10 36 40 90 3 y	9 10 19 20	95 3
AMOGH YADWAD	6 6 5	17 30	57 2	6 6 9	7 7 35 50 70 3 y	6 4 10 20 30 67 3 y			
AMRUTHA T MADIHALLI 8	9 8	25 30	83 3 y	9 7 9	10 7 42 50 84 3 y	10 9 10 29 30 97 3 y	10 9 9 10 38 40 95 3 y	9 8 17 20	
ANAND BHARDWAJ 10 ANANDHU A 9	9 6	16 20 24 30	80 3 y 80 3 y	9 8 9		10 9 10 29 30 97 3 y 10 10 10 30 30 100 3 y	10 9 9 10 38 40 95 3 y 10 9 9 10 38 40 95 3 y	9 6 15 20	75 3
ANANYA 9	6	15 20	80 3 y 75 3 y		6 7 38 50 76 3 v	10 10 10 30 30 100 3 y		9 6 15 20	
ANANYA ANAND T	10 6	16 20	80 g y	7 8 8	10 7 40 50 80 3 y	10 10 10 30 30 100 3 y	10 9 8 10 37 40 93 3 y	8 4 12 20	60 3
ANANYA DIXIT	10 9 8	27 30	90 3 y	9 10 9	10 10 48 50 96 3 y	10 10 10 30 30 100 3 y	10 9 10 10 39 40 98 3 v	10 10 20 20	
ANANYA R 9 ANUP G 10	8 6	15 20 24 30	75 3 y		9 7 40 50 80 3 y 6 6 6 33 50 66 3 y 6	10 9 10 29 30 97 3 y 9 10 25 30 83 3 y	10 9 9 10 38 40 95 3 y 9 7 8 10 34 40 85 3 y	9 6 15 20	
ANUSHA B N 9	6	15 20	80 3 y		8 7 38 50 76 3 y	9 9 10 28 30 93 3 y	9 8 8 10 35 40 88 3 y	8 8 16 20	
ARPITHA A P 10	9 6	25 30	83 3 y	9 8 9	8 7 41 50 82 3 v	9 9 10 28 30 93 3 y	9 8 9 10 36 40 90 3 y	9 8 17 20	85 3
ASHISH SHARMA	9 7 6	22 30		7 8 6	8 7 36 50 72 3 v	9 10 10 29 30 97 3 v	10 8 9 10 37 40 93 3 v	9 6 15 20	
ASISH MOHANTY ATHARY KILKARNI 10	6 5 4	15 30 16 20	50 2 80 3 y	5 7 9	8 10 39 50 78 3 y 4 2 7 40 60 67 3 y	9 10 10 29 30 97 3 y 9 9 10 28 30 93 3 y	7 9 10 24 30 80 3 y 10 26 30 87 3 y	7 3 10 20 9 9 6 24 30	
AYAN AKASH 10	7 7	24 30	80 3 y		8 7 35 50 70 3 y	9 9 10 28 30 93 3 y	9 7 8 10 26 36 67 3 y	8 6 14 20	
AZRA RUMANA 10	9 8	27 30	90 3 y	9 10 10	9 6 10 54 60 90 3 y 6	10 10 26 30 87 3 y	10 10 10 10 40 40 100 3 v	10 8 18 20	90 3
B AKSHAY 10	9 7	26 30	87 3 v		6 7 38 50 76 3 y	8 9 10 27 30 90 3 v	9 8 10 27 30 90 3 v	7 6 13 20	
BACHU YOSHITHA 9 BASAWAKIRAN 10	8 5	17 20 23 30	85 3 y	9 8 8 8 6 9	8 9 42 50 84 3 v 6 4 33 50 66 3 v 5	9 9 10 28 30 93 3 y 9 9 23 30 77 3 y	10 8 9 10 37 40 93 3 v 7 8 8 10 33 40 83 3 v	9 8 17 20 8 6 14 20	85 3 70 3
BHAVYATHA M	9 8	17 20	J 7	10 10 10	8 7 45 50 90 3 v	9 9 23 30 77 3 y 8 9 10 27 30 90 3 y			75 3
BHUMIKA N DEEKSHITH	10 6	16 20	80	7 8 9	9 9 42 50 84	10 10 10 30 30 100 3	10 9 10 29 30 97		90
BONDADA DIVYA NAGA 10	6	16 20	80 3 v	9 10 9	8 8 44 50 88 3 v	8 6 10 24 30 80 3 y	9 9 9 10 37 40 93 3 v	9 8 17 20	85 3
BONTHALA SHARATH 0	8 6	23 30	3 y	8 8 8				 	3
CHANDRA 9 C B SURAJ KRISHNAN 8	5	13 20	77 3 y 65 3 y		8 7 39 50 78 3 v 10 3 20 40 50 2 8	- 1			60 3
CHANDANA GR 9	8 8	25 30	83 3 v	8 8 9	8 5 38 50 76 3 y 10	9 10 29 30 97 3 v	10 9 10 29 30 97 3 v	9 9 4 22 30	73 3
DARSHAN KUMAR N 10	6	16 20	80 g v	10 7 9	8 7 41 50 82 3 v 8	9 10 27 30 90 3 1	7 10 10 27 30 90 3 v	6 3 9 20	
DEEPANSHU KUMAR DHANUSH H V	9 6	15 20 17 20	75 3 y 85 3 y	8 5 8	8 7 36 50 72 3 v 8 29 40 73 3 v	8 9 10 27 30 90 3 v 9 9 10 28 30 93 3 v	9 10 10 29 30 97 3 y 7 8 8 10 33 40 83 3 y		90 3
DHANYASHREE	9 8 9 6	24 30	85 3 y	8 5 8 9 10 10	8 10 47 50 94 3 y	9 9 10 28 30 93 3 v 9 9 10 28 30 93 3 y	7 8 8 10 33 40 83 3 v 10 9 10 29 30 97 3 v		0 0 100 3
PARAMESHWAR BHAT DHOTRE SOHAM	8 7 3	18 30		7 5 5	7 10 34 50 68 3 y		10 8 9 10 23 30 37 3 y		
VIJAYKUMAR DHRUV K	9 8 7	24 30		8 8 8	7 7 38 50 76 3 y	8 9 10 27 30 90 3 y			3
DHRUVA S KASHYAP 6	6	12 20	60 3 y	5 5 3	8 7 28 50 56 2	8 9 10 27 30 90 3 y	7 7 10 24 30 80 3 v	8 7 4 19 30	
DILPREET KAUR	8 9 6	23 30		9 8 9	8 7 41 50 82 3 y	8 9 10 27 30 90 3 y	7 8 8 10 33 40 83 3 y	6 6 10	
DIVYASHREE S 10 DUDDELA RAMA Q	9 10 5	29 30 14 20	97 3 y	9 10 9	8 10 46 50 92 3 y 10 8 7 37 50 74 2	10 10 10 30 30 100 3 γ 10 9 10 29 30 97 3 γ	10 10 9 10 39 40 98 3 y		100 3
KEERTHANA 9 GARVIT VASTAWAT	9 8	14 20	, , ,		3 y	10 9 10 29 30 97 3 y 9 9 10 28 30 93 3 y			3
GAURAV R M 9	9 8 9 4	22 30	85 3 y	9 8 8	, , , , , , , , , , , , , , , , , , , ,	8 9 10 28 30 93 3 y	7 8 10 25 30 83 3 y	8 8 6 22 30	73 3
GAUTAMI RAKESH	10 5	15 20	75 3 v	5 7 8	5 7 32 50 64 3 v	8 9 8 25 30 83 3 v	10 8 8 10 36 40 90 3 v	8 4 12 20	60 3
HARSH SINGH 10	6	16 20	80 3 y	9 8 8	25 30 83 g v	0 0 0 0	7 9 9 10 35 40 88 3 v	9 5 14 20	
HARSHINI K INNAMURI SREELASYA 10	10 3	13 20 24 30	65 3 y	5 8 9 9 8 9		10 10 3 23 30 77 3 y 4 10 23 30 77 3 y	7 8 10 10 35 40 88 3 V 10 9 10 10 39 40 98 3 V	10 8 18 20 10 8 18 20	
ITISH AGARWAL 9	9 5	24 30 15 20	80 3 y 75 3 y		10 5 41 50 82 3 v 9 8 7 40 50 80 3 v	8 9 10 23 30 77 3 v	10 9 10 10 39 40 98 3 v 10 9 8 10 37 40 93 3 v		90 3 40 2
JEEVAN KUMAR S V 10	6	16 20	80 g v	10 9 9	8 10 46 50 92 3 v	9 9 10 28 30 93 3 v	10 8 10 28 30 93 3 y	9 6 15 20	75 3
JHANSI PRIYA S	10 6	16 20	80 3 y	9 10 9	10 7 45 50 90 3 y	9 10 10 29 30 97 3 v	10 5 7 10 10 42 50 84 3 y	7 6 13 20	65 3

the concept of free energy in equilibria and apply thermodynamic principles for the evaluation of		3	2	1				
the concept of free energy in equilibria and apply thermodynamic principles for the		3	2	1				
free energy in equilibria and apply thermodynamic principles for the		3	2	1				
equilibria and apply thermodynamic principles for the		3	2	1				
apply thermodynamic principles for the		3	2	1				
thermodynamic principles for the		Ü	_			1		
principles for the						-		
evaluation of								
-learn-hamited								
CO2: Evaluate								
the causes &								
effects of								
corrosion of								
metals and to		3	2	1		1		
prevent corrosion.								
Surface								
modification of								
metals to enhance								
CO3: Identify								
sustainable energy								
sources and its								
utilization for the		3	2	1		1	1	
improved living								
standards of								
people and better								
the impact of								
various types of								
pollution on		_	_					_
environment and		3	2				1	2
human beings and								
to control the								
6 . 6								
CO5: Quantitative								
and qualitative analysis of materials								
by using different								
instruments.		3	2	1	2	1		
Understand the		3	-2	1	2	1		
importance of								
nanomaterials and to								
study synthesis,								
nunerties and	Ciii*	3	2	1	2	1	1	2

SUBJECT / PO	PO1	PO2	PO3	PO4	PO5	PO7	PO8
CO ATTAINMENT FOR II-D-ISE 2020- 2021, 18CHE22	3	2	1	2	1	1	2

BMS INSTITUTE OF TECHNOLOGY & MANAGEMENT - BANGALORE Chemistry LAB Final Exam Results Information Science Engineering DEC 2020-APRIL 2021

COURSE OUTCOMES	ATTAINMENT LVL-I A	ATTAINMENT LVL-UNIVERSITY	OVERALL ATTAINMENT LVL	
CO1	3.00	3.00	3	
CO2	3.00	3.00	3	
			•	

1 IBY20IS001 2 IBY20IS002 3 IBY20IS003 4 IBY20IS004 5 IBY20IS005	AAYUSHI JAISWAL ABDUL SADIQ ABHA NAIR ABHINAV DADHICH ABHINAV JHA	66 84 95	66 84	3	Y Y
3 1BY20IS003 4 1BY20IS004	ABHA NAIR ABHINAV DADHICH		84	3	v
4 1BY20IS004	ABHINAV DADHICH	95		Ū	1
·			95	3	Y
5 1BY20IS005	ABHINAV JHA	86	86	3	Y
J		80	80	3	Y
6 1BY20IS006	ABHISHEK KUMAR SINHA	65	65	3	Y
7 1BY20IS007	ABHISHEK RAJ	40	40	2	-
8 1BY20IS008	ABHISHEK RAJPUT	65	65	3	Y
9 1BY20IS009	ABHISHEK SHANKAR	68	68	3	Y
10 1BY20IS010	ADDAGALLA SAI MANASWINI	83	83	3	Y
11 1BY20IS011	ADDITHYA JOSHI	70	70	3	Y
12 1BY20IS012	ADITI MALLICK	82	82	3	Y
13 1BY20IS013	ADITYA GOUR	85	85	3	Y
14 1BY20IS014	ADITYA PAL	73	73	3	Y
15 1BY20IS015	AHAANA SINGH	94	94	3	Y
16 1BY20IS016	AJAY V KAMATH	89	89	3	Y
17 1BY20IS017	AKANKSH P N	79	79	3	Y
18 1BY20IS018	AKHILA A R	87	87	3	Y
19 1BY20IS019	AKSHAY KUMAR R	50	50	2	-
20 1BY20IS020	AMAN TRIPATHI	80	80	3	Y
21 1BY20IS021	AMOGH YADWAD	46	46	2	-
22 1BY20IS022	AMRUTHA T MADIHALLI	83	83	3	Y
23 1BY20IS023	ANAND BHARDWAJ	87	87	3	Y
24 1BY20IS024	ANANDHU A	86	86	3	Y
25 1BY20IS025	ANANYA	86	86	3	Y
26 1BY20IS026	ANANYA ANAND T	61	61	3	Y
27 1BY20IS027	ANANYA DIXIT	83	83	3	Y
28 1BY20IS028	ANANYA R	86	86	3	Y
29 1BY20IS029	ANUP G	70	70	3	Y
30 1BY20IS030	ANUSHA B N	87	87	3	Y
31 1BY20IS031	ARPITHA A P	86	86	3	Y
32 1BY20IS032	ASHISH SHARMA	66	66	3	Y
33 1BY20IS033	ASISH MOHANTY	50	50	2	-
34 1BY20IS034	ATHARV KULKARNI	84	84	3	Y
35 1BY20IS035	AYAN AKASH	80	80	3	Y
36 1BY20IS036	AZRA RUMANA	88	88	3	Y
37 1BY20IS037	B AKSHAY	64	64	3	Y
38 1BY20IS038	BACHU YOSHITHA	70	70	3	Y
39 1BY20IS039	BASAWAKIRAN	72	72	3	Y
40 1BY20IS040	BHAVYATHA M	70	70	3	Y
41 1BY20IS041	BHUMIKA N DEEKSHITH	80	80	3	Y
42 1BY20IS042	BONDADA DIVYA NAGA SURYA	81	81	3	Y

43	1BY20IS043	BONTHALA SHARATH CHANDRA	57	57	2	-
44	1BY20IS044	C B SURAJ KRISHNAN	64	64	3	Y
45	1BY20IS045	CHANDANA G R	85	85	3	Y
46	1BY20IS046	DARSHAN KUMAR N	80	80	3	Y
47	1BY20IS047	DEEPANSHU KUMAR	89	89	3	Y
48	1BY20IS048	DHANUSH H V	53	53	2	-
49	1BY20IS049	DHANYASHREE PARAMESHWAR BHAT	85	85	3	Y
50	1BY20IS050	DHOTRE SOHAM VIJAYKUMAR	85	85	3	Y
51	1BY20IS051	DHRUV K	60	60	3	Y
52	1BY20IS052	DHRUVA S KASHYAP	51	51	2	-
53	1BY20IS053	DILPREET KAUR	78	78	3	Y
54	1BY20IS054	DIVYASHREE S	92	92	3	Y
55	1BY20IS055	DUDDELA RAMA KEERTHANA	79	79	3	Y
56	1BY20IS056	GARVIT VASTAWAT	81	81	3	Y
57	1BY20IS057	GAURAV R M	85	85	3	Y
58	1BY20IS058	GAUTAMI RAKESH	70	70	3	Y
59	1BY20IS059	HARSH SINGH	85	85	3	Y
60	1BY20IS060	HARSHINI K	74	74	3	Y
61	1BY20IS061	INNAMURI SREELASYA	90	90	3	Y
62	1BY20IS062	ITISH AGARWAL	86	86	3	Y
63	1BY20IS063	JEEVAN KUMAR S V	74	74	3	Y
64	1BY20IS064	JHANSI PRIYA S	92	92	3	Y

 SUM
 4882

 AVG
 76.28

 3
 57
 89.1

 2
 7
 10.9

 1
 0
 0.0

 Total No of Students
 64

TARGET is 60% marks. And more than 60% of students must achieve 60% marks.

Grading Scale							
SCORE :50% to <55% :	1						
55 to <60% :	2						
>=60% :	3						

Exam results							
GRADING AVG ON SCALE OF DISTRIBUTION %							
3		3	2	1			
76.28		89.1	10.9	0.0			

	CO RESULT	PO1	PO2	PO4	PO5
CO1: Handling different types of instruments for analysis of materials using small quantities of materials involved for quick and	3	3	1	2	1
CO2:Carrying out different types of titrations for estimation of concerned in materials using comparatively more quantities of materials involved for good results	3	3	1	2	1
Ciii*		3	1	2	1

SUBJECT / PO	PO1	PO2	PO4	PO5
CO ATTAINMENT FOR II-D-ISE 2020- 2021, 18CHEL26	3	1	2	1